高压变频器后端主要拖动风机、水泵类负载,通过与这些物体直接接触感知到电流也是可能的

发布时间:15-09-18 10:34分类:技术文章 标签:分光光度法
1.简述紫外一可见分光光度法是通过被测物质在紫外光区或可见光区的特定波长处或一定波长范围内的吸光度,对该物质进行定性和定量分析的方法。本法在检验中主要用于物质的鉴别、检查和含量测定。
定量分析通常选择物质的*大吸收波长处测出吸光度,然后用对照品或吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若该物质本身在紫外光区无吸收,而其杂质在紫外光区有相当强度的吸收,或杂质的吸收峰处该物质无吸收,则可用本法作杂质检查。
物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生,因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。有机化合物分子结构中如含有共扼体系、芳香环等发色基团,均可在紫外区(200-400nm)或可见光区(400-850nm)产生吸收。通常使用的紫外一可见分光光度计的工作波长范围为190-900nm。
紫外吸收光谱为物质对紫外区辐射的能量吸收图。朗伯一比尔(Lambert一Beer)定律为光的吸收定律,它是紫外分光光度法定量分析的依据,其数学表达式为:
式中A为吸光度; T为透光率; E为吸收系数; c为溶液浓度; l为光路长度。
如溶液的浓度(c)为1%(g/ml),光路长度(l)为1cm,相应的吸光度即为吸收系数,以Ecl表示。如溶液的浓度(c)为摩尔浓度(mol/L),光路长度为1cm时,则相应的吸收系数为摩尔吸收系数,以ε表示。
2.仪器
紫外一可见分光光度计主要由光源、单色器、样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。
为了满足紫外一可见光区全波长范围的测定,仪器备有两种光源,即氛灯和碘钨灯,前者用于紫外区,后者用于可见光区。
单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件,聚焦透镜或反射镜等组成。色散元件有棱镜和光栅两种,棱镜多用天然石英或熔融硅石制成,对200-400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。光栅系将反射或透射光经衍射而达到色散作用,故常称为衍射光栅,光栅光谱是按波长作线性排列,故为匀排光谱,双光束仪器多用光栅为色散元件。
检测器有光电管和光电倍增管两种。
紫外一可见分光光度计依据其结构和测量操作方式的不同可分为单光束和双光束分光光度计两类。单光束分光光度计有些仍为手工操作,即固定在某一波长,分别测量比较空白、样品或参比的透光率或吸光度,操作比较费时,用于绘制吸收光谱图时很不方便,但适用于单波长的含量测定。双光束分光光度计藉扇形镜交替切换光路使分成样品(S)和参比(R)两光束,并*后到达检测器,检测器信号经调制分离成两光路对应信号,信号的比值可直接用记录仪记录,双光束分光光度计操作简单,测量快速,自动化程度高,但作含量测定时,为求准确起见,仍宜用固定波长测量方式。
3.紫外一可见分光光度计的检定3.1波长准确度 3.1.1波长准确度的允差范围
紫外一可见分光光度计波长准确度允许误差,紫外区为±lnm,500nm处±2nm。
3.1.2波长准确度检定方法 3.1.2.1用低压汞灯检定
关闭仪器光源,将汞灯(用笔式汞灯*方便)直接对准进光狭缝,如为双光束仪器,用单光束能量测定方式,采用波长扫描方式,扫描速度“慢”(如15nm/min)、响应“快”、*小狭缝宽度(如0,lnm)、量程。0-*,在200-800nm范围内单方向重复扫描3次,由仪器识别记录各峰值(若仪器无“峰检测”功能,必要时可对指定波长进行“单峰”扫描)。
单光束仪器以7516型为例,可将选择开关放在X
0.1位置,透光率读数放在100(或选择开关放在X1,透光率放在10),关小狭缝,打开光闸门,缓缓转动波长盘,寻找汞灯546.07nm峰出现的位置,若与波长读数不符,应调节仪器左侧准直镜的波长调整螺丝,如波长向短波长方向移动,应顺时针方向旋转波长调整螺丝,如向长波方向移动,则应反时针方向旋转波长调整螺丝,调整好后,再按汞灯的下列谱线测试,记录每条谱线与仪器波长读数的误差。
用于检定紫外一可见分光光度计的汞灯谱线波长:237.83,253.65,275.28,296.73,302.15,313.16,334.15,365.02,365.48,366.33,404.66(紫色)、435.83(蓝色)、546.07(绿色),576.96(黄色)及579.07nm。
3.1.2.2用仪器固有的氘灯检定
本法主要用于日常工作中波长准确度的核对。取单光束能量测定方式,测量条件同上述低压汞灯的方法,对486.02nm及656.lOnm二单峰进行方向重复扫描3次。
3.1.2.3用氧化钬玻璃检定
将氧化钬玻璃放人样品光路,参比光路为空气,按测定吸收光谱图方法测定。校正自动记录仪器时,应考虑记录仪的时间常数,测定样品与校正时取同一扫描速度。氧化钬玻璃在279.4,287.5,333.7,360.9,418.7,460.0,484.5,536.2及637.5nm波长处有尖锐的吸收峰,可供波长检定用。氧化钬玻璃因制造的原因,每片氧化钬的吸收峰波长有差异,另外,在放置过程中也会发生波长漂移,因此需定期由计量部门校验。
3.1.2.4用高氯酸钦溶液检定
本法可供没有单光束测定功能的双光束紫外分光光度计波长准确度检定用。
高氯酸钦溶液的配制方法:取10%高氯酸为溶剂,加人氧化钬(Ho2
03)配成4%溶液即得。高氯酸钦溶液较强的吸收峰波长为241.13,278.10,287.18,333.44,345.47,361.31,416.28,451.30,485.29,536.64,640.52nm。
如果是双光束扫描仪器,但不是数据贮存型的(指是直接将信号描记于记录纸上),记录的波长可能因记录笔滞后而非真实波长,为了准确测定,建议采用定点检定而不用扫描方式。
3.2吸光度准确度
精密称取在120℃干燥至恒重的基准重铬酸钾约60mg,置1000m1量瓶中,用0.005mo1/L硫酸液溶解并稀释至1000m1,用配对的1
cm石英池,以0.005mo1/L硫酸液为空白,在235,257,313,350nm分别测定吸光度,然后换算成E,测得值应符合表1中规定的允差范围。
分辨率、基线平直度、稳定度、绝缘电阻等项检定,按现行*技术监督局“双光束紫外一可见分光光度计检定规程”检定,应符合有关项下的规定。日常使用中,对以上两项,即波长和吸光度准确度应根据需要随时检查。

发布时间:15-09-18 09:48分类:技术文章 标签:电磁场 IEEE标准C 95.6-2002
6.6环境电场的曝露
由于环境电场在生物组织内感应出电场和躯体电流,以下结论可看作是合乎逻辑的:应当限制感应场,以排除直接电刺激的影响。然而,实际上接触电流和火花放电的准则(非直接电刺激)已经把环境电场限制到显著低于在生物组织内直接感应电场达到表1和表6水平所需要的数值。举例:对脑子中生物组织内电场的基本限值,在60
Hz时对公众是17.7
mV∕m(表1)。对一个直立的人、在地面上要感应这个场将需要一个环境场约为59
kV∕m(Carstensen[B22])。考虑到未畸变场在躯体表面上是增强的——例如在直立人的头部是18倍(Kaune[B51]),而在延伸的指尖上甚至可能增强得更高,在脑内感应上述电场所对应的环境场水平,躯体的一部分可能已处在电晕状态。
非直接刺激效应是通过在电场内人和导电物体之间的电荷转移而产生。在足够强的场中,一个人在正好直接接触之前瞬间能够觉察到火花放电;而在与导电物体(与地是良好地绝缘的)脱离接触后的瞬间,也能够觉察到火花放电。通过与这些物体直接接触感知到电流也是可能的。
直立的人在垂直极化的电场中,碰触到一个接地的物体,其接触电流分量Ic如方程式(10)(Reilly[B75])所示:
Ic=9.0×10-11h2fE(10) 这里 h 是人的高度 f是场的频率 E是环境场的场强
对本标准限值内频率的场,其中在躯体所能占据的范围上环境场的数值有所变化,在方程式(10)中的场强可以用躯体所处范围内的平均环境场来替代(Deno和Zaffanella[B29];Kaune[B51])。
表4中环境电场的曝露限值,意图是在一个直立的人碰摸到对地导电通路时,避免厌恶或痛感的接触电流或火花放电。在这个实例中,如果这个人对地是绝缘的(橡胶绝缘鞋、站立在绝缘垫上等),这个人*是感应的物体。在碰摸到与地绝缘的大型导电物体时情况下,上述限值可能不能保护接地的个人免除不良的电刺激。
表4中供防止不良接触电流的场的限值,与频率成反比例地变化。如果这个法则延伸到零频率,电场的限值将接近无穷大。故在*大许可电场上设置一个上限,来限制火花放电不良反应的可能性。
在表4中对公众的*大许可场是5kV∕m。这是估计,在良好绝缘并碰摸到在5kV∕m场内的接地物体的成人中,火花放电约对7%成人产生痛感。当一个接地的人碰摸到大型的导电物体,该大型导电物体处在一个强场内、且对地是良好绝缘的情况下,不愉快的火花放电也可能发生。当非常巨大(或长)的物体处在靠近产生电场的源处、而这些电场源在空间上是非常延伸的,例如高压输电线路的情况下,*避免所有不良刺激的可能性,而不减少在物体上的感应电荷是不可能的。例如有一根带绝缘支柱的长栅栏杆与高压输电线平行走向时,在这些情况下,宁可适当地将导电的物体(如其他安全法规中所陈述的)进行接地来限制电刺激,而不是将电场限制到不切实际的很小水平。
在受控环境中,那里*大许可曝露水平MPE限制为20
kV∕m,对在地面上绝缘的人碰摸到接地导电物体时,痛感的火花放电而不是接触电流,可能很容易地在所述及的限值上碰到。在这样的强场之内,工作者应当适当地使用防护服、接地的措施、接触的技术、或考虑到这些环境电场效应的其他工作上的实践,来限制痛感火花放电的可能性。在受控制的环境中,可穿导电衣服,来屏蔽高的环境电场,从而大大地降低非直接的电刺激。传导到穿防护服个人躯体上的电流将不得超出表5中的限值。
电力线路走廊对公众来说,一定程度上界于“受控”和“不受控制”环境的定义之间,其中公众的活动可由公用事业公司予以限定,但是为了公众的利益,通常是允许公众进入的。因此,本标准为公众规定了线路走廊以外区域的限值5kV∕m,但是在正常负荷情况下,在走廊之内,允许一个中间的场10
kV∕m。(如果电力线走廊符合受控环境的要求,那么可应用受控环境的限值)。对人体对象使用火花放电刺激的实验数据(Reilly[B75];Reilly和Larkin[B81])能够适用到这种曝露。在10kV∕m的场中,约50%的对地良好绝缘的成人对象(1.8米高)在接触到接地导体时将感受到痛感的放电,对更高个子的对象,上述概率会增加,而对较矮的对象则会降低。当人体对地不完全绝缘时,概率也会下降。
在电力输电线走廊内、外的允许*大电场,还要受到来自其他机构或要求的限制,诸如美国*安全用电法规(NESC)和其他电力公司的规章。美国*安全用电法规R(NESCR)(被认可的标准委员会C2-1997年)规定了来自高压输电线电场内物体的5mA短路电流(即是电流经一个低阻抗的连接到地)的安全限值。这个规定的意图是限制接触电流达到百分之几的敏感儿童在*坏情况下的“可释放”(let-go)水平,而不是避免接触电流或火花放电的厌恶或痛感的感觉。
在不存在非直接刺激的情况下,环境的电场有时能够通过由场和带电荷毛囊间相互作用引起的躯体毛发振动被觉察到。在一个足够的强场中,这种感觉可能使有些人产生烦恼。举例:在一个室外环境的20
kV∕m下,50%站立的成人能够觉察到60Hz的场,而5%者将会注意到有烦恼的感觉(Deno和Zaffanella[B29];Reilly[B69])。虽然20%的对象在9
kV∕m时会觉察到60Hz的电场,小于5%的人能够察觉到2或3
kV∕m的电场(Reilly[B69])。当手举高超过躯体时,中值的感觉阈值是7
kV∕m。
当一个曝露的个人不在可触及接地导电物体范围之内(例如一个带电线路工人在一个绝缘的斗车上),表4中的*大曝露限值可能并不适用。在这些情况下,接触电流和火花放电的数值将由个人与所碰触物体间的电位差、以及他们的电容来决定。分委员会建议对公众要遵照表4的限值。然而,在工人们并不在可触及接地的导电物体范围以内的受控环境中,表4的限值可以超过。在这种受控环境中,分委员会没有针对这种情况的特定建议。不考虑导电物体的尺寸和曝露个人可能会碰摸到的物体的可接近程度,可接受曝露的*上限将由防止人体表面电晕的需要来确定。对任何曝露的躯体部分,超过30
kV∕m的曝露(非畸变场)估计是不会被接受的。 6.7静止或准静止的电场
*大许可环境电场已经被加以上限,来限制产生痛感火花放电的可能性。这个限值原则上可以延伸到任意的低频,因为即使单个放电也可是有痛感的。然而在足够低的频率下,时间常数τh(在此时间常数上人体能够保持电荷)将开始限制感应电荷的数值。该时间常数由人的对地电容和电阻的乘积来给出。举例,考虑电阻是1000MΩ,这可适用于在干燥地面穿正常鞋子的10%人员(Reilly[B70],[B75]),以及电容是150
pF。这些假设形成了150ms时间常数,相当于1
Hz的频率,低于这频率给定场内的感应电压会降低、而许可的曝露能够上升。然而对站在良好绝缘表面上的人,将可能有更长的时间常数。这个观点对经历过地毯积累电荷1秒或更长时间后发生不愉快地毯火花放电的人而言,显然是易于认同的。
这些观察可以用如下方式反映到表4的标准中:对1000MΩ的泄漏电阻,低于1Hz的许可*大限值可以近似地与频率成反比例地增加;对更大的电阻,可适用的频率将更低。
6.8反应阈值的统计性变动
可以观察到电气阈值因人不同,而有很大变动。电作用阈值的统计分布通常可用对数正态分布来表达,也即统计变量的对数具有正态分布。对数正态分布的平均值始终超出中值。平均值与值的比例ρ在方程式(11)中表达(Hastings和Peacock[B38]):
ρ=exp(σ2∕2)(11) 这里σ 是统计变量自然对数的方差。
对一个50%数值与1%数值之比等于3的分布,平均值与中值的比例是1.12,即是平均值超出中值12%。上述关系式在给出的是实验的平均值而不是中值时,是很有用的。
在许多的电刺激实例中,实验阈值很好地符合于对数正态分布,虽然通常必需在对数正态坐标上重新绘制公布的数据来显示这种分布。对数正态分布被发现在:接触电流的人体感觉(Larkin及其同事[B56]);接触电流的牛的感觉(Reinemann及其同事[B56]);人体的“释放”阈值(Dalziel[B26]);电场的人体感觉(Reilly[B69]);时变磁场的人体感觉和从时变磁场来的痛苦感(Nyenhuis及其同事[B67]);人体电痉挛治疗法(ECT)发作的阈值(Weaver和Williams[B97]);以及狗的心脏VF(室性纤维颤动)阈值(Reilly[B75])。
对数正态的坡度可以表达为中值与百分之一阈值的比。从实验数据得出的近似坡度参数能够总结为:在前臂上接触电流的人体感觉:3.0;人体感觉、指尖:2.0;VF阈值,狗:2.1;牛的接触电流感觉:2.3;人体ECT发作阈值:2.0;时变磁场的人体感觉:1.9。可看到,坡度参数3代表着应用于本标准中的观察到的*大坡度,虽然一个更典型情况将具有坡度参数约为2。
表9提供了对数正态模型的实例(中值归一化到1.0),可应用到健康成人人体前臂的感觉刺激,以及应用到健康狗的心脏室性纤颤(VF)上(Reilly[B75])。对指尖感觉的实验室数据更加接近地遵循VF值。与从健康动物来的数据相比,对直接电极接触到达经受阀瓣更换开心外科手术病人的心脏上(Watson及其同事[B96]),已经报告了VF阈值具有非常广泛的分布。对人在病理学状态、或是药物治疗下的阈值还没有进行试验。
表9对健康成年人群(男性与女性)使用对数正态模型、电作用阈值的归一化分布a,b
百分序列(%) 阈值系数,感觉和痛苦 阈值系数,心脏室性纤颤 99.5 3.45 2.33
99.0 3.11 2.14 95.0 2.24 1.67 90.0 1.85 1.51 75.0 1.40 1.24 50.0 1.00
1.00 25.0 0.72 0.80 10.0 0.54 0.66 5.0 0.45 0.60 1.0 0.32 0.47 0.5 0.29
0.43
a.感觉的分布根据对手臂接触的人体实验数据。室性纤颤的分布来自健康狗的心脏。
b.来源:Reilly[B75]。
将表9的分布模型外推到任意小的百分序列等级上是吸引人的。然而,实验证据并不足以支持低于1%等级的外推,这是由于提供有效实验数据的对象数目有限。分委员会采纳一个为3的系数,来把中值阈值转换到敏感个人。这*多将包括1%的*敏感个人,但是通常而言,影响本标准处理大多数反应时的百分等级取为更小。
人与人之间阈值的变化,尚没有很好地理解。*与电阈值相关联的明显生理参数是躯体的尺寸和相关的参数,如性别与年龄(Larkin及其同事[B56]和Reilly[B75],[B81])。这种关联表现为:较小的个体倾向于具有较低的阈值。躯体尺寸的关联是在感觉作用、“释放”阈值、和心脏室性纤颤中发现的。实验证据表明:在人体中的痛苦阈值和动物中的室性纤颤阈值近似地随着躯体重量的平方根而变化,虽然也有已提出的其他关系(Reilly[B75])。人体中的“释放”阈值近似地正比于躯体重量而变化。因此,小的个体特别是儿童,将是*易受电刺激影响的。另一方面,由电场和磁场所感应的电流数值随着对象尺寸的减小而降低。对接触电流,小的个体通常比较大的个体具有较大的四肢间电阻。因为这些的补偿因子,躯体尺寸的影响预计不会大。当然,磁场感觉阈值和形态因子(对象的性别、腰围、重量与年龄)之间关系的研究,证明了与上述因子中任何一个都缺乏显著的相互关系。
分节6.11.2提供了对数正态统计模型的应用实例。 6.9验收准则(标准)
6.9.1基本限值
在表1中列出的*大许可曝露水平系从表6的中值阈值导出的。在导出中,使用一个由激励的中值阈值转换到有害作用阈值的系数,使在健康成人中具有低的可能性(或然率)、并具有一个合适的安全因子。表10汇总了用来导出基本限值的这些系数:列A列出考虑中的作用;列B列出刺激的部位;列C列出中值基强度的激励阈值Eot,该值来自表6,但使用转换式E(rms)=E(峰值)∕从峰值转换到rms值;列D列出应用到列C、从中值激励阈值转换到中值有害作用阈值的系数(倍率)Fa;列E列出从中值阈值转换到低-或然率的阈值的系数Fp;列F列出分别应用到公众和受控的环境的安全因子Fs;列G列出在生物组织内场的基强度Eob=EotFaFpFs,这些是表1中基强度的基本限值。
表10将中值转换到MPE(*大许可曝露)数值的几个因子 A 作用 B 部位 C阈值
Eot(50%) (V/m, rms) D 有害作用因子 (Fa) E或然率 因子 (Fp)
F安全因子(Fs) G基本限值(Eob) 公众 受控环境 公众 (V/m, rms) 受控环境
(V/m, rms) 突触改变 脑 0.053 1.0 0.333 0.333 1.000 5.89×10-3 1.77×10-2
10-μm 神经元 激励 脑 8.70 1.0 0.333 0.333 1.000 0.970 2.90 20-μm 神经元
痛苦 躯体 4.35 (感觉) 1.45 (痛苦) 0.333 0.333 1.000 0.700 2.10 20-μm
神经元 痛苦 手、脚、 腕、踝 4.35 (感觉) 1.45 (痛苦) 0.333 1.000
1.000 2.10 2.10 心脏激励 心脏* 8.49 1.0 0.333 0.333 0.333 0.943 0.943
表1中所列出的基本限值是根据在生物组织内的感应电场;然而,感应的模式可以是通过环境磁场或电场的作用。除了感应电场的规范之外,也必需限制在生物组织内的磁场、以防止由甚低频磁场(见第6.4节)而来磁流体动力效应的有害作用。表1规定低于10
Hz的这些限值。对较高频率规定磁场基本限值是不需要的,因为潜在的有害影响将关联到感应电场,而不是生物组织内磁场本身。
下述的章节总结了表10中出现的各系数(倍率)的基本原理。
6.9.1.1有害作用因子
对周边神经激励,痛苦被考虑是一种有害反应。一个有害作用系数Fa=1.45应用到神经激励的阈值,来导出一个痛苦的阈值(见第6.2节)。对突触的效应、脑刺激和心脏激励,激励本身被考虑为有害的,如在6.1.2节和6.1.3节中所提到的;因此有害作用系数Fa=1.0应用到这些作用的激励阈值上。
6.9.1.2或然率因子(可能性因子)
或然率因子Fp应用来从中值的阈值转换到低或然率的阈值。对对数正态分布,其中坡度参数(中值—百分之一比例)是3,应用到中值阈值的系数0.333相应于百分之一*敏感的人体对象。在一些情况下观察到坡度参数为3(例如在前臂上的接触电流感觉);而对本标准应用的其它临界反应(磁场感觉、心脏VF、脑部ECT阈值),坡度参数非常接近于2.0(见第6.8节)。对坡度参数为2,应用到中值阈值的系数0.333所对应的是0.01%或然率(的敏感对象)。
6.9.1.3安全因子
由于病理学条件或药物治疗导致阈值影响的不确定性,作用阈值的不确定性,以及感应模型的不确定性,用于保护特别敏感个人的安全因子的系数为Fs=0.333。在手、腕、脚、和踝的情况下,与躯体其他部位相比,在确认狭窄的截面和优越的低导电率的组织倾向于增强这些部位内生物组织内的电场的前提下,取Fs=1。因为这些部位与紧要器官相比,缺少关键功能,故较大的局部电场是允许的。在受控环境情况下,对应于所有的作用型式Fs=1,仅有的例外是心脏的激励,这是根据以下设想,即:在受控环境中,对有些机制来说不舒适的小可能性是可接受的,但是对所有的各体,心脏的激励是不能接受的。安全因子Fs=1对所指的曝露是合理的,因为本标准系基于避免曝露个体立即出现的短期反应,而不是在低于感觉水平上的慢性(长期)曝露的健康影响,以及累积曝露可能是显著的场合。作出的假设是:因为短期作用对曝露的个人是很明显的,故他们会自己离开这环境、调整他们的活动、或采取避免这种曝露的其它行动。
与应用于较高频率的IEEE标准C95.1相比,如果安全因子Fs=0.333,注意到:应用于感应场的除数3,等效于SAR(比吸收率)中的除数9,因为SAR是正比于感应场的平方。
6.9.2*大许可曝露水平
在评估基本限值是否得到满足时,有时需要复杂计算的能力。因此,希望取用环境场中的参考水平,而不是在生物组织内的感应场来定义MPE数值。在表2中所列出的MPE结合有保守的假设,以使符合MPE*可保证基本限值不会超过。然而因为MPE是保守地导出的,故有可能当一个人超出MPE时,仍然在基本限值之内。
图1显示出磁场MPE水平的导出。图1表明对整个躯体曝露的有害作用中值阈值(虚线)和MPE值(实线)。MPE是按每个频率的*小有害阈值,再降低一个表10中的相应或然率与安全因子后得出的。对突触改变的曲线已经延伸到1000
Hz。MPE曲线从*低有害作用阈值导出,跨越不同频谱的有害作用分别如下:0-0.153
Hz,磁流体动力效应;0.153-759 Hz,突触的改变;超出759
Hz,周边神经的痛苦。注意:在受控环境中的MPE,相应于低或然率的作用阈值(≤1%)。这些限值应用到公众时,再降低一个3倍的因子。表2表明了MPE的参考水平。
为了验证是符合本标准的目的,表2和表4应当分别地考虑,而不是相加的。这是因为,环境电场与磁场所感应的生物组织内的电场,在表2和表4所代表的情况下,是在躯体的关节分离部位上*大化了的。
图1来自磁场曝露有害刺激的中值阈值(破折线)和推荐的*大许可曝露限值(实线);
(整个躯体曝露到空间的不变的场) 6.10部分的或不均匀的曝露
表2中的限值是*整个躯体曝露到数值和相对相位相对地不变的磁场情况下,用来避免有害的作用。由于手臂与腿的曝露,对生物组织内的电场在头部与躯干内的贡献(数值)是不大的,故该限值也适用于只作用在头部与躯干的恒定场。然而,当一个作用在头部与躯干上的磁场非恒定时,对磁场的一项保守处理是限制与表2相一致的实际场的空间峰值。这是可能的,这样的处理可能是过分地限制,一个可接受的可选方案将是限制外部的磁场,以使生物组织内的电场不超出表1的基本限值。为确定是否与表1相符合,可能必需模拟感应的过程,使用实际场的值(方向、数值、与相对相位)、和相应的生理模型(计算的或物理的),模型的定向符合场的方向。
在头部与躯干的磁场曝露显著不均衡的场合下,需要满足基本限值(表1)的*大许可曝露的磁通密度可能变化很大。为显示出这点,考虑有一个的只有躯干曝露60
Hz场,和另一个躯干与头部均被曝露的60Hz场。如果只有躯干被曝露,MPE将被周边神经的刺激来限制,而不是脑部的突触效应。对躯干的曝露,60Hz时的MPE将是34.8mT;粗略地是对头部与躯干两者同时曝露时的限值2.71
mT(表2)的13倍。
表4中的电场参照水平,不是根据表1中生物组织内的电场限值而得出的;更确切地说,这些限值是根据非直接的电刺激。如果在躯体尺寸上的平均环境电场不超出表4的限值,火花放电与接触电流将是可接受的。这些限值是根据这种假设:即曝露的人对地是绝缘的;是非常靠近地而不是靠近场源;是在可触及一个接地导电物体的范围之内。
6.11感应电流和接触电流 6.11.1总的关系
强度-持续时间和强度-频率曲线决定了接触电流神经刺激的阈值特性。进入接触电极的电流的基强度阈值数值,随着接触面积而反比例地变化。轻指尖接触的碰触面积假设为1cm2,而一个更大的接触范围(≌15cm2)可适用到握紧的接触。因此,在表5中对握紧和碰摸的接触予以不同的值。在控制环境中的握紧接触的限值适用于这种情况:那里人员被训练来实现与潜在的带电导体或当该人是感应的物体时,与接地导体的握紧接触、而避免碰摸的接触。假设公众是不会意识到带电物体可能产生导电电流,接触的方式也是不受约束的。规定的限值降低了这种可能性,即与带电物体的疏忽(非故意的)接触能够导致皮肤外层微小的局部灼伤(随着火花放电)、痛苦的感觉、或是惊起的反应,后者会在本质上没有危害时,却引起一个事故。
正弦形电流感觉的大量实验显示出强度-频率法则,即在临界频率fe以下具有一个*小的平稳段,在此之上,当电流是具有连续性质时,阈值会聚到与频率成正比例的法则(Reilly[B75])。在连续的正弦形刺激下,直到100
kHz的频率,已经证实了在人体中与频率成正比例的阈值。超出这个频率,热感应阈值将占主导地位(Chatterjee及其同事[B23];Dalziel和Mansfield[B27])。然而,对脉冲的正弦形波形,其频率-正比例关系曲线能够延伸到MHz的范围,如在老鼠的神经刺激实验中(LaCourse及其同事[B55]),以及使用短暂(≌0.1μs)脉冲的人体实验之中(Reilly[B75])所指出的那样。
根据神经激励的模型,强度-持续时间和强度-频率的常数关系为fe=1∕(2τe)。因此,导致小τe数值的因子将会增加fe。虽然涉及这种变动的因子尚未很好地弄清楚,实验的fe值变动很显著。分委员会采取以下假设,即接触电流的fe是3kHz,允许对*低阈值在3kHz和低于3kHz时,依据较高频率时所确定的阈值,使用一个坡度为f,外推到较低的频率。通过进一步的研究,来理解强度-持续时间和强度-频率法则中所观察到的实验常数的变动将是必要的。
6.11.2统计关系的说明
对3.0kHz频率的碰摸接触的痛苦水平可以从Chatterjee及其同事[B23]的实验中来外推,这是假设的拐角频率(超出该频率具有一个与频率成比例的坡度)。在10kHz上(由Chatterjee作试验的*低频率),平均痛苦水平对成人(男性与女性混合的)是8.0mA,和对10岁的儿童是6.0mA。这些值可以利用1.12的因子作为除数转换到中值阈值,如在第6.8节中所指出的。10kHz的阈值应用0.3的乘数(3
kHz∕10kHz的比例),外推到3
kHz的基强度。其结果是,中值的痛苦阈值对成人是2.14mA,而对10岁的儿童是1.6mA(译注:即=6.0
mA÷1.12×0.3)。对接触电流使用一个为0.7的不愉快-痛苦的比例(参见地6.2节),中值的不愉快基强度水平估计为对成人是1.5mA,而对儿童是1.12
mA。应用这些中值的数值到具有中值-百分之一比例为3.0的对数正态模型上,可确定出如下的作用概率。对碰摸接触水平为0.5
mA(对公众的MPE),儿童中的不愉快的或然率是5%,而痛苦的或然率是1%;而在成人中:不愉快的或然率是1%,而痛苦的或然率是0.1%。碰摸接触电流水平为1.5
mA时,在成人中痛苦的或然率是23%,而不愉快的或然率是50%。
如果接触是通过紧握来实现的而不是碰摸,对感觉和痛苦的电流阈值明显地较大。在10kHz下紧握接触的平均感觉水平,对成人是13mA(Chatterjee及其同事)。外推到频率3kHz,确定的中值感觉阈值为3.48
mA(译注:即=13
mA÷1.12×0.3)。中值的不愉快或痛苦的阈值,可分别应用乘数2.4和1.7来确定(第6.2节),其结果是中值基强度不愉快水平为5.92
mA、痛苦水平为8.35 mA。在紧握接触电流为3
mA时(表5中受控环境紧握接触MPE的规定),在成人中的不愉快或然率(可能性)估计是8%,而痛苦的或然率是1.6%。
在表5中的接触电流水平并不包括安全因子。在注意到接触电流的作用水平与本标准中所述及的其他作用阈值相比,是很好地被通晓的前提下,忽略安全因子被证实是合理的。
6.12医疗装置和金属植入物
使用医疗装置和金属的植入物的个体曝露到电场和磁场之中,可能涉及特殊的健康与安全问题。本标准并不必然地提供保护来防止对这些装置或硬件的干扰。这些装置的领受者或供应商,应当注意这些危害的潜在性和这些装置可能必需的注意事项。
用电的医疗装置,可能易受来自许多不同的电能干扰源的影响。对医疗装置的干扰可能在低于上述电刺激影响阈值的曝露情况下发生。若干型式的医疗装置已经设计得能免受电干扰(举例:心脏起搏器),但在使用中的许多装置并不已经设计或测试得免除这些干扰。甚至在已具有合理的抗干扰能力的情况下,在超过抗干扰能力时,也可能发生严重的病人后果。对装置干扰的关心已扩展到用电供给动力的医疗装置的广泛范围。这些装置的实例包括有、但并不*制于:心脏起搏器、除颤器、药物输送泵、神经刺激器、助听器、窒息(呼吸暂停)监控器、医疗床以及动力的轮椅。当认为是必要时,应当从该装置的制造商处或从疾病医疗开业医生处取得忠告。
现有一些涉及医疗装置的电磁兼容性(EMC)以及该装置在曝露环境中功能的标准。*广泛被公认的、由国际电工委员会(IEC[B44])所颁布的医疗装置标准,复盖了许多的、但不是全部的医疗装置。也有针对主动植入医疗装置的通用标准,其中包含着EMC的要求(ECES[B33];IEC[B44];ISO[B48])。此外,IEC医疗设备的EMC标准的更新工作正在进行之中,并发展为对心脏起搏器、植入式除颤器更为一致的标准,其中包括EMC的要求,诸如在美国的医疗器械发展协会(AAMI[B1])和欧洲的欧洲电工标准化委员会(ECES[B34],[B35]))中所涉及的。
金属植入物是另一种等级的医疗植入物,诸如金属限制器、钉钩和矫形外科的金属棒与板。在有些情况下,金属植入物会接触到敏感的组织,如心脏钉钩。不像医疗装置那样,这些植入物可能不会由于电干扰而出现失效(故障)模式。然而,植入在躯体中的金属硬件,或许会因提供磁感应的环路而增强感应的电场,或许会因提供一个高导电率的部位而导致局部地增强感应的电场,并进而增强在靠近植入物局部范围的电刺激可能性(Reilly和Diamant[B78])。
附录 A(资料提供性的) 文献目录
这里引述从科学会议或技术报告而来的文献,这是因为这些资料在审核人来源中是不具有的。
文献共99份,译文略。 附录 B(规范的、标准的) 磁感应模型
使用于提出本标准的磁感应模型,将躯体所曝露的截面处理为一个椭圆的形状,带有均匀的导电率。这个模型的解决方案,适用于场的波长远大于躯体尺寸,已经由Durney及其同事[B32]所发表,并被Spiegel[B93]以以适用的方式表达出来。这里现在所使用的方式是由Reilly[B72]所表达的方式。由一个外部磁感应场产生的感应电场的通用表达式示于方程式(B.1),该外部磁场在椭圆上的数值和相对相位是常数:
E=-w(B.1)
这里au和av是各别地沿着短轴和长轴的单位向量,(a,b)各别地是半长轴和半短轴,(u,v)是曝露区域内的位置,而w是磁通密度在垂直于截面方向的时间变化率、这是个向量。在以下的计算中,感应场E以数值表达,而不是它的向量成份。坐标系统是这样的,即椭圆的短轴是沿着u-方向,而长轴是沿着v-方向。
表B.1总结了用于确定表7中0数据的曝露条件。表B.1中条目如下。第2列表示曝露的情况。举例:第1行为位于脑部的一个10-μm神经元的激励,磁场垂直于矢截面。第3列给出椭圆的半短轴和半长轴。第4列给出截面内电场被评价的部位。第5列是假设的基强度值E0(从表6来)。*后一列给出由方程式(B.1)所确定的0数值。在这个公式之中,作出假设:一个椭圆在三个方位中的一个是适合于躯干、躯体或头部的。因此,参考系统(u,v)是与所设定的椭圆相联系的,而不是相对于躯体的一个特定的参考系统。
表B.1用于计算磁场感应的椭圆曝露的模型a,b 条目 曝露 b,a(cm, cm)
u,v(cm, cm) E0(V/m-pk) B0(T/s-pk) 1 10-μm神经、脑、径向的 9, 10.5
9, 0 12.3 237 2 突触、脑、径向的 9, 10.5 9, 0 0.075 1.45 3
20-μm神经、躯体、径向 17, 90 17, 0 6.15 37.5 4 20-μm神经、躯干、冠状 20,
40 20, 0 6.15 38.4 5 心脏、躯体、径向的 17, 90 14, 18 12.0 88.7 6
心脏,躯干,径向的 17, 40 14, 18 12.0 98.6 7 腿 9, 42 9, 0 6.15 71.5
a.b,a各别地代表椭圆的半短轴和半长轴,该椭圆适用于特殊的躯体部分,也*是:在条目1和2中的脑部,条目4中的躯干,以及在条目3和5中的整个躯体。
b.(u,v)代表椭圆内的部位,那里感应场是被评价的,其中u和V是各别地沿着短轴和长轴进行测量的。
在条目(1)和(2)之中,所假设的椭圆并不假定是代表脑子的真实尺寸,而是一个包围其外部周边(大脑皮质)的椭圆的尺寸,那里感应电场的数值是*大的。包围脑子的椭圆具有半长轴和半短轴,系小于假设的头部尺寸1.5cm,这是考虑到皮质和头顶皮间的距离1.5cm。条目(3)和(5)把曝露作为均匀地复盖整个躯体处理;条目(4)和(6)假设只有躯干是曝露的。后者被包括在表中是为了显示,整个躯体曝露的*坏情况下与只是躯干受曝露两者之间,*周边神经和心脏刺激而言,具有一个适度的差别(约10%)。
u,v点的选择,是对每个被假设的方案相当于*坏情况的曝露点。在脑子的情况下[条目(1)和(2)],皮质那里感应的电场是*大的,径向的(矢状的)曝露提供了*大的磁感应环路。对条目(3)和(5),一个椭圆适合于在径向的截面中观察的整个躯体。在心脏的情况下,对电刺激的*大敏感点是在心脏的*(Roy及其同事[B84]),而在此位置上,*大感应场被发现是在径向曝露时(Reilly[B72])。在条目(5)和(6)中的点(u,v)相当于心脏的*。
在表B.1中的曝露椭圆相当于成人的一个很大的躯体尺寸(但不是极大的),这是根据拟人数据(美国汽车工程师协会SAE[B85])。假设一个很大的躯体尺寸是保守的。

发布时间:15-09-01 17:47分类:行业资讯 标签:变频器
随着我国十二五规划制造业目标的提出,我国制造业开始以发展*进装备、促进制造业由大变强作为未来发展的方向。我国变频器行业的竞争将日趋激烈。由于市场极具诱惑力,潜在容量十分可观,不断吸引着行业新参与者进入,而现有市场已形成一定规模,发展日渐成熟。
其中,变频器以其*的特点在制造业领域中迅速得到了推广,占领了市场。变频器是工控系统的重要组成设备,安装在电机前端以实现调速和节能。变频技术因其具有的优异性能将在工业调速和精密控制领域得到进一步推广。高压变频器后端主要拖动风机、水泵类负载,实际节电效果达30%-60%,未来该业市场发展将受益于大中型项目改;低压变频器与控制层和执行层设备共同组成自动化控制系统,未来发展将受益于制造业装备升级。变频器趋向多元化从整体看,我国变频器行业的竞争将日趋激烈。由于市场极具诱惑力,潜在容量十分可观,不断吸引着行业新参与者进入,而现有市场已形成一定规模,发展日渐成熟,未来的资源掠夺、市场争战将是必然。随着技术上不断进步,产品质量的稳定性逐渐提升,加上服务和价格等方面的优势,国内厂家的竞争力将愈加强大。从需求方面看,变频器也正逐渐走向多元化,通用型、专用型产品的出现都是为了满足用户的多样需求。此外,变频器厂商也更多关注产品质量和使用安全,积极寻求更大的突破,使得变频器在恶劣的环境也能很好的工作,并确保使用安全和用户的正常生产。节能环保成不变的主题我国的风机、水泵、空气压缩机等主要电机设备为满足运行中的*高功率要求,输出功率经常有很大的设计冗余,若使用机械调速能量被大量浪费在阀门和风门挡板上。变频技术通过电力电子控制完成调速,在后端拖动电机使其转速变化范围增大,频率高时效果更为明显。风机水泵类负载*适宜安装变频器节能,相比低压变频,高压技术在细分行业使用更为广泛。有关专家对比了电气设备中几种主要节能产品效果,其中变频器效率高达30%~60%,使用时只需装在电机前端,对原有设备改动较小。节能环保推广时推动我国变频器行业发展的动力,变频技术也正处于从调速到节能的转变过程。十二五规划提出了制造装备升级和工业节能环保,确立了未来行业发展仍将走调速节能并举的路径。预计低压变频器一自动化改造和进口替代为主线,国内企业将重点发展控制和驱动技术;高压变频器依托*节能环保政策,下游仍以电力、冶金、水泥等的大型工业设备改造为主,竞争加剧将刺激高性能产品国产化提速。附爱仪器仪表网热卖产品:德国AARONIA(安诺尼)
HF-6065频谱仪

  1. 3杂散光的检查 可按表2所列的试剂和浓度,配制成水溶液,置1
    cm石英池中,在规定的波长处测定透光率,应符合表2中规定。
    4.样品测定操作方法4.1吸收系数测定(性状项下)
    按各品种项下规定的方法配制供试品溶液,在规定的波长处(参见5.8项)测定其吸光度,并计算吸收系数,应符合规定范围。
    4.2鉴别及检查
    按各品种项下的规定,测定供试品溶液的*大及*小吸收波长,有的必须测定其在*大吸收波长与*小吸收波长处的吸光度比值,均应符合规定。
    4.3含量测定 4.3.1对照品比较法
    按各品种项下规定的方法,分别配制供试品溶液和对照品溶液,对照品溶液中所含被测成分的量应为供试品溶液中被测成分标示量的*土10%以内,用同一溶剂,在规定的波长处测定供试品溶液和对照品溶液的吸光度。
    4.3.2吸收系数法 按各品种项下配制供试品溶液,在规定的波长及该波长士2
    nm处测定其吸光度,按各该品种在规定条件下给出的吸收系数计算含量。用本法测定时,吸收系数通常应大于100,并注意仪器的校正和检定,如测定新品种的吸收系数,需按后列“吸收系数测定法”的规定进行。
    4.3.3计算分光光度法
    按规定,计算分光光度法一般不宜用于含量测定,对于少数采用计算分光光度法的品种,应严格按各品种项下规定的方法进行。用本法时应注意:有一些吸光度是在待测成分吸收曲线的上升或下降陡坡处测定,影响精度的因素较多,故应仔细操作,尽量使供试品和对照品的测定条件一致。若该品种不用对照品,如维生素A测定法,则应在测定前对仪器作仔细的校正和检定。
    4.3.4比色法
    供试品本身在紫外一可见光区没有强吸收,或在紫外光区虽有吸收但为了避免干扰或提高灵敏度,加人适当的显色剂,使反应产物的*大吸收移至可见光区。
    用比色法测定时,由于显色时影响显色深浅的因素较多,应取供试品与对照品或标准品同时操作。除另有规定外,比色法所用的空白系指用同体积的溶剂代替对照品或供试品溶液,然后依次加入等量的相应试剂,并用同样方法处理。
    当吸光度和浓度关系不呈良好线性时,应取数份梯度量对照品溶液,用溶剂补充至同一体积,显色后测定各份溶液的吸光度,然后以吸光度与相应的浓度绘制标准曲线,再根据供试品的吸光度在标准曲线上查得其相应的浓度,并求出其含量。
    5.注意事项 1.试验中所用的量瓶和移液管均应经检定校正、洗净后使用。
    2.使用的石英吸收池必须洁净。当吸收池中装人同一溶剂,在规定波长测定各吸收池的透光率,如透光率相差在0.3%以下者可配对使用,否则必须加以校正。
    3.取吸收池时,手指拿毛玻璃面的两侧。装样品溶液的体积以池体积的4/5为度,使用挥发性溶液时应加盖,透光面要用擦镜纸由上而下擦拭干净,检视应无残留溶剂,为防止溶剂挥发后溶质残留在池子的透光面,可*用醛有空白溶剂的擦镜纸擦拭,然后再用干擦镜纸拭净。吸收池放人样品室时应注意每次放人方向相同。使用后用溶剂及水冲洗干净,晾干,防尘保存,吸收池如污染不易洗净时可用硫酸发烟硝酸(3:1V/V)混合液稍加浸泡后,洗净备用。如用铬酸钾清洁液清洗时,吸收池不宜在清洁液中长时间浸泡,否则清洁液中的铬酸钾结晶会损坏吸收池的光学表面,并应充分用水冲洗,以防铬酸钾吸附于吸收池表面。
    4.含有杂原子的有机溶剂,通常均具有很强的末端吸收。因此,当作溶剂使用时,它们的使用范围均不能小于截止使用波长。例如甲醇、乙醇的截止使用波长为205nm。另外,当溶剂不纯时,也可能增加干扰吸收。因此,在检查所用的溶剂在供试品所用的波长附近是否符合要求,即将溶剂置1
    cm石英吸收池中,以空气为空白(即空白光路中不置任何物质)测定其吸光度,溶剂和吸收池的吸光度应符合表3规定。
    5.称量应按规定要求。配制测定溶液时稀释转移次数应尽可能少,转移稀释时所取容积一般应不少于5m1。含量测定时供试品应称取2份,如为对照品比较法,对照品一般也应称取2份。吸收系数检查也应称取供试品2份,平行操作,每份结果对平均值的偏差应在±0.5%以内。作鉴别或检查可取样品1份。
    6.供试品溶液的浓度,除各品种项下已有注明者外,供试品溶液的吸光度以在0.3~0.7之间为宜,吸光度读数在此范围误差较小,并应结合所用仪器吸光度线性范围,配制合适的读数浓度。
    7.选用仪器的狭缝谱带宽度应小于供试品吸收带半高宽的1000,否则测得的吸光度值会偏低,或以减小狭缝宽度时供试品溶液的吸光度不再增加为准,对于紫外分光光度法测定的大部分品种,可以使用2nm缝宽,但当吸收带的半高宽小于20nm时,则应使用较窄的狭缝,例如青霉素钾及钠的吸光度检查需用1nm缝宽或更窄,否则其264nm的吸光度会偏低。
    8.测定时除另有规定者外,应在规定的吸收峰±2nm处,再测几点的吸光度,以核对供试品的吸收峰位置是否正确,并以吸光度*大的波长作为测定波长,除另有规定外吸光度*大波长应在该品种项下规定的波长±2nm以内,否则应考虑试样的同一性、纯度以及仪器波长的准确度。
    9.用于制剂含量测定时,应注意供试液与对照液的pH值是否一致,如pH值对吸收有影响,则应调溶液的pH值一致后再测定吸光度。
    6.结果计算 6.1对照品比较法
    可根据供试品溶液及对照品溶液的吸光度与对照品溶液的浓度以正比法算出供试品溶液的浓度,再计算含量。
    c样品=A样品×c对照/A对照 式中A为吸光度值; c为测试液浓度(以mg/ml计)。
    6.2吸收系数法 规定的吸收系数,系指E,即在指定波长时,光路长度为1
    cm,试样浓度换算为1%(g/ml)时的吸光度值,故应*求被测样品的E值,再与规定的E标准值比较,可计算出供试样品的含量。
    E=A/cl 式中A为供试品溶液测得的吸光度值;
    c为供试品溶液的百分浓度,即100m1中所含溶质的克数(g/ml);
    l为吸收池的光路长度(cm)。 供试品的含量%=E/E标准*100
    式中E(样品,为根据前式计算出的供试品吸收系数;
    E标准为标准中规定的吸收系数。 7.吸收系数测定法
    本法主要用于新品种的吸收系数测定。 7.1测定方法
    取精制样品精密称取一定量,使样品溶液配成吸光度读数在0.6~0.8之间,置1
    cm吸收池中,在规定波长处按5.8项的规定测出吸光度读数,然后再用同批溶剂将溶液稀释1倍,使吸光度在0.3~0.4之间,再按上述方法测定。样品应同时测定2份,同一台仪器测定的2份结果,对平均值的偏差应不超过±0.300,否则应重新测定。测定时,*按仪器正常灵敏度测试,然后再减小狭缝测定,直到减小狭缝吸光值不增加为止,取吸光度不改变的数据。再用4台不同型号的仪器复测。
    吸收系数可根据朗伯一比尔定律求算,以下例说明。
    已知某化合物的分子量为287,用乙醇配成浓度为0.0030%的溶液,在波长297nm处,用1
    cm石英池,测得吸光度为0.6139,求E值及摩尔吸收系数ε值。 7.2测定注意事项
    7.2.1样品应为精制品,水分或干燥失重应另取样测定并予以扣除。
    7.2.2所用的容量仪器及分析天平应经过检定,如有相差应加上校正值。
    7.2.3测定所用的溶剂,其吸光度应符合规定。吸收池应于临用时配对或作空白校正。
    7.2.4称取样品时,其称量准确度应按规定要求。
    7.2.5所用的分光光度计应经过严格检定,特别是波长准确度和吸光度精度要进行校正。要注明测定时的温度。

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注